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1 Introduction

The lattice Boltzmann method (LBM) has been successfully applied to many
computational fluid dynamics problems over the past two decades [1–3]. LBM
can offer highly parallel algorithms and accurate solutions because of the use
of uniform Cartesian meshes, which make the streaming of the particle dis-
tribution function as the exact solution of linear advection equation. Severe
limitations arise, however, from its inherent instability at high Reynolds num-
ber (Re) and the use of uniform structured grids. These two aspects are closely
related to each other in that the lattice Boltzmann equation (LBE) is a dis-
cretized form of the discrete Boltzmann equation (DBE) along characteristics,
and thus the time and space discretizations are strongly coupled. Since He and
and Luo [4] and Abe [5] demonstrated that the discretization of physical space
does not necessarily need to couple with the discretization of momentum space,
several efforts have been made to address the treatment of curved or irreg-
ular boundaries and the control of mesh resolution at desirable regions, and
significant progress has been achieved in recent years to overcome the limita-
tions of LBM. Cao et al. [6] indicated that the conventional LBM is a special
finite difference discretization of the kinetic equation of the discrete velocity
distribution function, and thus LBE can be solved on nonuniform grids using
a semi-implicit collision scheme. With a rigorous foundation established, var-
ious numerical methods have been applied directly to the discrete Boltzmann
equation (DBE) using finite difference (FD) [7–13], finite volume (FV) [14–
18], finite element (FE) [19–21], and spectral-element discontinuous Galerkin
(SEDG) methods [22,23].

FD-LBM is a straightforward generalization of the conventional LBM at non-
unit CFL number [24] and offers flexibility in the choice of time-stepping
methods. The perfect shift in the conventional LBM is a special case of FD-
LBM at unit CFL number. The simple Cartesian grid structure for FD-LBM
offers ease of implementation but complicates accurate treatment of curved
boundaries, causing unwanted velocity slip and mass and momentum conser-
vation errors [25,26]. The spatial approximation of FV-LBM uses purely local
approximation in space and imposes no conditions on the grid structure; thus,
the approach is suitable for dealing with complex geometries. From the diver-
gence theorem, the flux term of DBE becomes surface integral, requiring local
reconstruction of the fluxes at the boundaries. However, when we need to in-
crease the order of accuracy, a high-order reconstruction of the solution values
at the interface destroys the geometric flexibility [27], which makes high-order
accuracy on unstructured grids a challenge. On the contrary, FE-LBM allows
higher-order approximation simply by adding additional degrees of freedom to
the element, while retaining geometric flexibility. In FE-LBM, the solution is
continuous on the nodes along the faces of the elements shared by the neigh-
boring elements, which essentially introduces the globally defined basis and
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test functions. The inversion of global mass matrix can be expensive, however,
when a fully explicit time-stepping method is employed.

SEDG-LBM uses the local element-based basis, which makes the mass matrix
local and thus can be inverted at little cost. Like the finite-volume method it
also satisfies the governing equation by introducing numerical fluxes, but it is
able to achieve high-order accuracy on general grids [27].

In this paper, we present SEDG-LBM using quadrilateral elements based on
Gauss-Lobatto-Legendre grids, for which the two-dimensional mass matrix be-
comes a complete diagonal matrix whose inversion is trivial. High-order dis-
cretization is used with explicit time-stepping. In our SEDG-LBM, the SEDG
approximation is applied to the streaming step after the collision step is com-
pleted, whereas the SEDG-LBMs in [22,23] are applied to the complete DBE.
Our approach avoids the severe time-step restriction caused by small values
of the relaxation time and enables us to investigate flows at higher Re. Both
central and upwind numerical fluxes are implemented for benchmark prob-
lems. In [22,23], only the upwind-biased numerical flux was considered, largely
because of the numerical instability with the central flux. For the particle dis-
tribution function that enters into the computational domain, a boundary
condition needs to be provided. The most popular wall boundary condition
is the bounce-back scheme [28], in which the incoming particle distribution
function into the domain takes the value of the outgoing particle distribution
function in the opposite direction. In [23], the bounce-back rule was imposed
strongly on the incoming particle distribution function after each time step.
In the present work, the bounce-back scheme is implemented in a weak sense
through the numerical flux, which is consistent with the overall numerical
procedure inside the computational domain.

The paper is organized as follows. In Section 2, we present the LBE for the
incompressible flows and the SEDG approximation applied to the LBE. Spa-
tial and temporal discretizations are detailed, and numerical fluxes for wall
boundary conditions are discussed. Section 3 is devoted to validation of our
SEDG-LBM. The physics of lid-driven cavity flows and impulsively started
flows past a circular cylinder are studied. Conclusions are given in Section 4.

2 Formulation

We describe LBM including two steps: collision and streaming. For the stream-
ing step, we examine a discontinuous Galerkin approach based on spectral el-
ement discretizations using quadrilateral meshes in two dimensions. We con-
struct numerical fluxes and present a consistent treatment for imposing bound-
ary conditions with the central and Lax-Friedrichs fluxes. Spatial and temporal
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discretizations are discussed in detail.

2.1 Lattice Boltzmann Equation

We consider the discrete Boltzmann equation with the Bhatnagar-Gross-Krook
collision operator [29]

∂fα

∂t
+ eα · ∇fα = −

fα − f eq
α

λ
on Ω for α = 0, 1, ..., Nα, (1)

where fα is the particle distribution function defined in the direction of the
microscopic particle velocity eα, λ is the relaxation time, and Nα is the number
of microscopic velocity. The local equilibrium distribution function is given by

f eq
α = tαρ

[

1 +
eα · u

c2s
+

(eα · u)2

2c4s
−

(u · u)

2c2s

]

, (2)

where tα is the weight, ρ is the density, u is the macroscopic velocity, and cs
is the speed of sound [30].

Then the discrete form of the DBE in Eq. (1) along characteristics over the
time step δt, called the LBE, are obtained as

fα(x, t) − fα(x − eαδt, t− δt) = −

t
∫

t−δt

fα − f eq
α

λ
dt′. (3)

The time integration over [t − δt, t] is coupled with the space integration in
[x− eαδt,x]. Taking a second-order approximation by the trapezoidal rule for
the integration in the right-hand side of Eq. (3), we have

fα(x, t) − fα(x − eαδt, t− δt)

= −
fα − f eq

α

2τ
|(x−eαδt,t−δt) −

fα − f eq
α

2τ
|(x,t), (4)

where the nondimensional relaxation time is τ = λ/δt with relation to the
kinematic viscosity by ν = τc2sδt.

Here, we introduce a modified particle distribution function f̄α and its corre-
sponding equilibrium distribution function f̄ eq

α in order to facilitate computa-
tion [31]:
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f̄α = fα +
fα − f eq

α

2τ
and f̄ eq

α = f eq
α . (5)

The density and momentum can be computed by taking moments as follows:

ρ =
Nα
∑

α=0

fα =
Nα
∑

α=0

f̄α, and ρu =
Nα
∑

α=0

eαfα =
Nα
∑

α=0

eαf̄α. (6)

Then Eq. (4) can be recast in a simpler form in terms of the modified particle
distribution function:

f̄α(x, t) − f̄α(x − eαδt, t− δt) = −
1

τ + 0.5

(

f̄α − f̄ eq
α

)

|(x−eαδt,t−δt). (7)

Note that although Eq. (7) appears to be explicit in time, it is fully implicit
for the relaxation term.

We solve Eq. (7) in two steps:

• Collision:

f̄α(x − eαδt, t− δt)

:= f̄α(x − eαδt, t− δt) −
1

τ + 0.5

(

f̄α − f̄ eq
α

)

|(x−eαδt,t−δt), (8)

• Streaming:

f̄α(x, t) = f̄α(x − eαδt, t− δt). (9)

The streaming step can be expressed as a solution of the pure advection equa-
tion

∂f̄α

∂t
+ eα · ∇f̄α = 0. (10)

In the conventional LBM, the grid points coincide with the lattice points, and
the streaming step expressed by Eq. (9) becomes a perfect shift but when
using unstructured grids the accuracy for the streaming step depends on the
approximation order of the scheme used.

In the next section, we discuss discretizations and algorithms for solving the
advection equation using a spectral element discontinuous Galerkin approach
with Runge-Kutta time-stepping. Combined with the collision step based on
the choice of the two-dimensional 9-velocity lattice [30], we complete the de-
scription of our SEDG-LBM.
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2.2 Discontinuous Galerkin Spectral Element Method

We begin section with a weak formulation of the advection equation, Eq. (10),
using a discontinuous Galerkin approach introducing a flux vector. Spectral
element discretizations, numerical flux with boundary condition implementa-
tion, and time integration are discussed.

2.2.1 Weak Formulation for the Discontinuous Galerkin Method

We use a multidomain approach for solving the advection equation, Eq. (10).
We consider a nonoverlapping element Ωe such that Ω = ∪E

e=1Ω
e. We introduce

a flux vector defined as Fα(f̄) = eαf̄α for the velocity vector eα = (eαx, eαy).
Then Eq. (10) defined on Ω can be written as

∂f̄α

∂t
+ ∇ · Fα(f̄) = 0. (11)

Eq. (11) can be recast in an equivalent variational form as

(

∂f̄α

∂t
+ ∇ · Fα(f̄), φ

)

Ωe

= 0, (12)

where φ is a local test function. Integrating by parts of Eq. (12), we obtain

∫

Ωe

φ
∂f̄α

∂t
dΩ −

∫

Ωe

Fα(f̄) · ∇φdΩ = −
∫

∂Ωe

φn · Fα(f̄)dΩ̄, (13)

where Ω̄ represents the surface boundary of the element Ωe (i.e., ∂Ωe) and
n = (nx, ny) is the unit normal vector pointing outward. Here we introduce a
numerical flux F∗, which is a function of the local solution f̄ and the neighbor-
ing solution f̄+ at the interfaces between neighboring elements. The numerical
flux combines the two solutions that are allowed to be different at the neigh-
boring element interfaces. The analytic flux Fα(f̄) is replaced by the numerical
flux F∗

α(f̄):

∫

Ωe

φ
∂f̄α

∂t
dΩ −

∫

Ωe

Fα(f̄) · ∇φdΩ = −
∫

∂Ωe

φn · F∗
α(f̄)dΩ̄. (14)

Integrating by parts of Eq. (14) again, we obtain the final form of the weak
formulation as follows:
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(

∂f̄α

∂t
+ ∇ · Fα(f̄), φ

)

Ωe

=
(

n ·
[

Fα(f̄) − F∗
α(f̄)

]

, φ
)

∂Ωe
. (15)

2.2.2 Numerical Fluxes for the Discontinuous Galerkin Method

Here we define two different numerical fluxes, central and Lax-Friedrichs fluxes,
for F∗

α(f̄) = F∗
α(f̄ , f̄+), which we used for our simulations.

(i) Central Flux: For the central flux given by

F∗
α(f̄ , f̄+) =

1

2

[

Fα(f̄) + Fα(f̄+)
]

, (16)

we have the following form in the integrand of Eq. (15):

n · (Fα − F∗
α) =

1

2
(n · eα)[f̄α − f̄+

α ] =
1

2
(nxeαx + nyeαy)[f̄α − f̄+

α ]. (17)

At the interfaces, the normal vectors hold: nx = −n+
x and ny = −n+

y . However,
the velocity vector components are always fixed in the neighboring element for
each eα. Thus Eq. (17) can be separated into two components: one for local
component and the other for neighboring component with ”+”:

n · (Fα − F∗
α) =

1

2

[

(nxeαx + nyeαy)f̄α + (n+
x eαx + n+

y eαy)f̄
+
α

]

. (18)

(ii) Lax-Friedrichs Flux: For the Lax-Friedrichs flux [27,32,33], we have

F∗
α(f̄ , f̄+) =

1

2

[

Fα(f̄) + Fα(f̄+) + |Λ|(f̄α − f̄+
α )n

]

, (19)

where Λ = max
(

n · ∂F

∂f̄

)

= n · eα. Then, since we have

n · (Fα − F∗
α)=

1

2
(n · eα − |n · eα|)[f̄α − f̄+

α ], (20)

the equation can be simplified as

n · (Fα − F∗
α) =











(n · eα)[f̄α − f̄+
α ] for n · eα < 0,

0 for n · eα ≥ 0.
(21)
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In the similar manner as in (18), for the case of n · eα < 0, we can write

n · (Fα − F∗
α) = (nxeαx + nyeαy)f̄α + (n+

x eαx + n+
y eαy)f̄

+
α . (22)

2.2.3 Boundary Conditions

The wall and moving wall boundaries are weakly imposed through the nu-
merical fluxes. For outgoing flows eα · n > 0, the flux difference is set to be
f̄α − f̄+

α = 0. For incoming flows eα · n < 0, we apply boundary conditions
through f̄α − f̄+

α = f̄α − f̄+
α∗ − 2tα(eα · ub)/c

2
s, where α∗ indicates the velocity

component in the opposite direction of α and ub is the velocity defined at the
boundaries. The detailed expression for the flux difference in Eqs. (17) and
(21) can be written as

if e1 · n < 0 (⇔ e3 · n > 0); f̄1 − f̄+
1 = [f̄1 − f̄+

3 ] − 2t1(e1 · ub)/c
2
s,

f̄3 − f̄+
3 = [f̄3 − f̄+

1 ] = 0,

if e2 · n < 0 (⇔ e4 · n > 0); f̄2 − f̄+
2 = [f̄2 − f̄+

4 ] − 2t2(e2 · ub)/c
2
s,

f̄4 − f̄+
4 = [f̄4 − f̄+

2 ] = 0,

if e3 · n < 0 (⇔ e1 · n > 0); f̄3 − f̄+
3 = [f̄3 − f̄+

1 ] − 2t3(e3 · ub)/c
2
s,

f̄1 − f̄+
1 = [f̄1 − f̄+

3 ] = 0,

if e4 · n < 0 (⇔ e2 · n > 0); f̄4 − f̄+
4 = [f̄4 − f̄+

2 ] − 2t4(e4 · ub)/c
2
s,

f̄2 − f̄+
2 = [f̄2 − f̄+

4 ] = 0,

if e5 · n < 0 (⇔ e7 · n > 0); f̄5 − f̄+
5 = [f̄5 − f̄+

7 ] − 2t5(e5 · ub)/c
2
s,

f̄7 − f̄+
7 = [f̄7 − f̄+

5 ] = 0,

if e6 · n < 0 (⇔ e8 · n > 0); f̄6 − f̄+
6 = [f̄6 − f̄+

8 ] − 2t6(e6 · ub)/c
2
s,

f̄8 − f̄+
8 = [f̄8 − f̄+

6 ] = 0,

if e7 · n < 0 (⇔ e5 · n > 0); f̄7 − f̄+
7 = [f̄7 − f̄+

5 ] − 2t7(e7 · ub)/c
2
s,

f̄5 − f̄+
5 = [f̄5 − f̄+

7 ] = 0,

if e8 · n < 0 (⇔ e3 · n > 0); f̄8 − f̄+
8 = [f̄8 − f̄+

6 ] − 2t8(e8 · ub)/c
2
s,

f̄6 − f̄+
6 = [f̄6 − f̄+

8 ] = 0,

where tα is the weight with t0 = 4/9, tα(α = 1, 3, 5, 7) = 1/9 and tα(α =
2, 4, 6, 8) = 1/36 for the case of the 9-velocity lattice [30].
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2.2.4 Spectral Element Basis, Differentiation, and Integration

Here we describe a set of one-dimensional discretization grids and its asso-
ciated Lagrangian basis, differentiation matrix, and quadrature weights. We
consider the ordered set of N + 1 Gauss-Lobatto-Legendre (GLL) quadrature
nodes {ξ0, ξ1, ..., ξN} that are solution of the equation

(1 − ξ2)L′
N (ξ) = 0, ξ ∈ [−1, 1], (23)

where L′
N (ξ) is the derivative of the Nth order Legendre polynomial LN(ξ).

Our one-dimensional Lagrange interpolation basis with the GLL grids is given
by

li(ξ) =
−1

N(N + 1)

(1 − ξ2)LN ′(ξ)

(ξ − ξi)LN (ξi)
, 0 ≤ i ≤ N, ξ ∈ [−1, 1], (24)

which satisfies li(ξj) = δij , where δij is the Kronecker delta. It immediately

provides the one-dimensional differentiation matrix D̂ at the GLL grids ξk
given by

D̂ki =
∂li(ξk)

∂ξ
= l′i(ξk), (25)

whose the explicit form is shown in [34,35]. The quadrature rule for the inner
product associated with the GLL grids is defined as

(f, g)[a,b] =

b
∫

a

f(x)g(x)dx =

1
∫

−1

f(ξ)g(ξ)J(ξ)dξ ≈
N
∑

k=0

f(ξk)g(ξk)wkJk, (26)

where the quadrature weights are defined by wk = 2[N(N + 1)L2
N(ξk)]

−1 and
the local Jacobian for the transformation between [a, b] and [−1, 1] is J(ξ) = dx

dξ

and Jk represents J(ξk).

2.2.5 Spectral Element Discretizations

Now we consider our computational domain Ω in two-dimensional space.
Each (x, y) ∈ Ωe is mapped on the reference domain, (ξ, η) ∈ I = [−1, 1]2,
through a Gordon-Hall mapping [34]. The tensor-product structure of the ref-
erence element I allows us to define a two-dimensional basis as ψij(ξ, η) =
li(ξ(x))lj(η(y)), or simply ψij .

We seek a local approximate solution in Ωe defined by the finite expansion of
the tensor product basis ψij(ξ, η) as
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f̄N
α := f̄N

α (x, y, t) =
N
∑

i,j=0

(f̄N
α )ijψij(ξ, η), (27)

where (f̄N
α )ij = f̄N

α (xi, yj, t), that is, the nodal values of the approximate
solution f̄N

α at time t on the tensor product of the one-dimensional GLL
quadrature nodes, (ξi, ηj) [34].

For derivatives, we have

∂f̄N
α

∂t
=

N
∑

i,j=0

d(f̄N
α )ij

dt
ψij(ξ, η), (28)

∂f̄N
α

∂x
=

N
∑

i,j=0

(f̄N
α )ij

∂ψij

∂x
(ξ, η) =

N
∑

i,j=0

(f̄N
α )ij

(

∂ψij

∂ξ

∂ξ

∂x
+
∂ψij

∂η

∂η

∂x

)

, (29)

∂f̄N
α

∂y
=

N
∑

i,j=0

(f̄N
α )ij

∂ψij

∂y
(ξ, η) =

N
∑

i,j=0

(f̄N
α )ij

(

∂ψij

∂ξ

∂ξ

∂y
+
∂ψij

∂η

∂η

∂y

)

, (30)

where we can compute the geometric terms pointwise by

∂ξ

∂x
=

1

J

∂y

∂η
,
∂η

∂x
= −

1

J

∂y

∂ξ
,
∂ξ

∂y
= −

1

J

∂x

∂η
,
∂η

∂y
=

1

J

∂x

∂ξ
, (31)

with the Jacobian J =
(

∂x
∂ξ

∂y
∂η

− ∂x
∂η

∂y
∂ξ

)

from the following relation:







∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y













∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η





 ≡







1 0

0 1





 . (32)

We recall the weak formulation Eq. (15) and plug Eqs. (27)-(30) into it, with
a test function chosen from the tensor product basis, namely, φ := ψîĵ . Then
we have the following components in the discretized weak form:

d(f̄N
α )ij

dt
(ψij , ψîĵ)Ωe + eαx(f̄

N
α )ij

(

∂ψij

∂x
, ψîĵ

)

Ωe

(33)

+eαy(f̄
N
α )ij

(

∂ψij

∂y
, ψîĵ

)

Ωe

=
(

n ·
[

F(f̄N
α )ij − F∗(f̄N

α )ij

]

, ψîĵ

)

∂Ωe
.

Applying the Gauss quadrature rule to Eq. (33), we obtain the mass and
stiffness matrices in two dimensions. For the mass matrix, we have
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M = (ψij , ψîĵ)Ωe =
N
∑

k=0

N
∑

m=0

li(ξk)l̂i(ξk)lj(ηm)lĵ(ηm)wkwmJkm (34)

= M̂ ⊗ M̂,

where Jkm represent the value at each node in a local element for the Jacobian
J . Note that we have

M̂ij =
N
∑

k=0

li(ξk)l̂i(ξk)wkJk = diag(wiJi), (35)

which is the one-dimensional diagonal mass matrix as in Eq. (26). Its ten-
sor product form is also a complete diagonal matrix in two dimensions. The
stiffness matrices are also represented in a tensor product form of the one-
dimensional differentiation matrix D̂ in Eq. (25) as

Dx =

(

∂ψij

∂x
, ψîĵ

)

=
N
∑

k=0

N
∑

m=0

l′i(ξk)G
ξx
kml̂i(ξk)lj(ηm)lĵ(ηm)wkwmJkm (36)

+
N
∑

k=0

N
∑

m=0

li(ξk)l̂i(ξk)l
′
j(ηm)Gηx

kmlĵ(ηm)wkwmJkm

=Gξx[M̂ ⊗ M̂D̂] +Gηx[M̂D̂ ⊗ M̂ ],

Dy =

(

∂ψij

∂y
, ψîĵ

)

=
N
∑

k=0

N
∑

m=0

l′i(ξk)G
ξy
kml̂i(ξk)lj(ηm)lĵ(ηm)wkwmJkm (37)

+
N
∑

k=0

N
∑

m=0

li(ξk)l̂i(ξk)l
′
j(ηm)G

ηy

kmlĵ(ηm)wkwmJkm

=Gξy[M̂ ⊗ M̂D̂] +Gηy [M̂D̂ ⊗ M̂ ],

where Gξx = diag(Gξx
km), Gξy = diag(Gξy

km), Gηx = diag(Gηx
km), and Gηy =

diag(Gηy
km) represent the geometric factors ∂ξ

∂x
, ∂ξ

∂y
, ∂η

∂x
, and ∂η

∂x
, respectively,

and their values at each node (ξk, ηm).

The surface integration in Eq. (34) is in fact the one-dimensional integration
on each face of the local element:

R(f̄N
α ) =

4
∑

s=1

N
∑

k=0

Rs
k{(n · eα)[(f̄N

α )ij − (f̄N
α )+

ij ]}wkJ
s
k , (38)

where Rs
k{·} extracts the information of {·} at the nodes situated on each face

of the local element for the face number s and Js
k is the surface Jacobian at

the nodes on each face. To define the unit normal vector n corresponding to
the face in the reference domain I with respect to ξ and η, i.e., nξ and nη,
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respectively, we consider the infinitesimal displacement (x, y) in the tangential
direction along the boundary ∂Ωe, which can be written as

ǫξ =

(

∂x

∂ξ
,
∂y

∂ξ

)

dξ, and ǫη =

(

∂x

∂η
,
∂y

∂η

)

dη. (39)

From the fact that ∂ξ
∂x

∂x
∂η

+ ∂ξ
∂y

∂y
∂η

= ∂η
∂x

∂x
∂ξ

+ ∂η
∂y

∂y
∂ξ

= 0 in Eq. (32) and the relation

in Eq. (31), we can obtain the normal vectors as

n̂ξ =

(

∂ξ

∂x
,
∂ξ

∂y

)

=
1

J

(

∂y

∂η
,−

∂x

∂η

)

, n̂η =

(

∂η

∂x
,
∂η

∂y

)

=
1

J

(

−
∂y

∂ξ
,
∂x

∂ξ

)

,(40)

so that the unit normal vectors can be defined as nξ =
n̂ξ

|n̂ξ|
and nη = n̂η

|n̂η |
. The

infinitesimal lengths along the face on ∂Ωe corresponding to ξ and η are

dl = |ǫξ| =

∣

∣

∣

∣

∣

(

∂x

∂ξ
,
∂y

∂ξ

)∣

∣

∣

∣

∣

dξ and dl = |ǫη| =

∣

∣

∣

∣

∣

(

∂x

∂η
,
∂y

∂η

)∣

∣

∣

∣

∣

dη, (41)

respectively, and thus their associated surface Jacobians Js are
∣

∣

∣

(

∂x
∂ξ
, ∂y

∂ξ

)∣

∣

∣ and
∣

∣

∣

(

∂x
∂η
, ∂y

∂η

)∣

∣

∣, respectively.

The semidiscrete scheme for Eq. (15) in a local domain Ωe can be written in
matrix form as

dfα
dt

+ M−1Dfα = M−1Rfα, (42)

where fα = [f̄N
α ]ij is a solution vector, D = eαxDx + eαyDy, and R is the

surface integration acting on the boundary nodes on each face of the local
element.

2.2.6 Eigenvalues of the SEDG Operator

The semidiscrete SEDG scheme in Eq. (42) can be expressed in a simple form
as

dfα
dt

= Lfα, (43)

where L = M−1(−D + R) is the spatial operator. To obtain a fully discrete
scheme, we need to choose a method for integrating the system of the ordinary
differential equations Eq. (43) in time. Let us denote the eigenvalues of the

12



spatial operator as σ, satisfying Lfα = σfα. For a fully discrete scheme to be
stable, the real part of the eigenvalues must be Re(σ) ≤ 0. Figure 1 shows
the eigenvalue spectrums of the spatial advection operator of the SEDG ap-
proximation for the central and Lax-Friedrichs fluxes with periodic and wall
boundary conditions. A uniform spectral element mesh is used with the num-
ber of elements E = 3 × 3 and the approximation order N = 5.

For the case with periodic boundary conditions, all the eigenvalues of the
advection operator with the central flux fall on the imaginary axis, while
the eigenvalues of the advection operator for the Lax-Friedrichs flux are dis-
tributed in the negative half-plane. In Figs. 1(a) and (b), the maximum values
of Re(σ) indicate machine precision for both central and Lax-Friedrichs fluxes.
This result indicates that one can choose the time-stepping scheme whose sta-
bility region includes the imaginary axis or negative half-plane for periodic
problems.

For the case with wall boundary conditions, we observe some positive eigen-
values for the advection operator with the central flux. Fig. 1(c) shows that
the maximum value of Re(σ) is positive. Numerical solutions associated with
the positive eigenvalues can grow dramatically in time, resulting in instability.
Thus, central flux is not suitable for problems with wall boundary conditions.
The spatial operator with the Lax-Friedrichs flux for wall boundary conditions
has all the eigenvalues in the negative half-plane with a maximum value of
Re(σ) at machine precision, shown in Fig. 1(d). Thus one can choose time-
stepping scheme whose stability region includes the negative half-plane for the
Lax-Friedrichs flux.

2.2.7 Time Stepping Method

For time integration, we choose the fourth-order, 5-stage, low-storage Runge-
Kutta method defined below, whose stability region is slightly larger and with
less memory than those of the classical Runge-Kutta (RK) methods:

u0 = fn
α (44)

for j = 1, ..., 4

Kj = ajKj−1 + δtL(uj, (n+ cj)δt)

uj = uj−1 + bjKj

fn+1
α = u4,

where aj , bj, and cj are given constants and

K1 =L(fn
α , t) = Ln, (45)

K2 =L(fn
α + 0.5δtK1, t+ 0.5δt),
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(a) Central Flux (periodic BC)
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(b) LF flux (periodic BC)

Re( σ), max=0.00058376
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(c) Central flux (wall BC)
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Fig. 1. Eigenvalue spectrums of the spatial advection operator based on the SEDG
approximation with E = 9, N = 5 for (a) central flux with periodic boundary (b)
Lax-Friedrichs flux with periodic boundary (c) central flux with wall boundary (d)
Lax-Friedrichs flux with wall boundary conditions.

K3 =L(fn
α + 0.5δtK2, t+ 0.5δt),

K4 =L(fn
α + δtK3, t + δt).

The time stepping of our SEDG-LBM algorithm is summarized as follows:

(1) Initialize density and velocity and compute the equilibrium function;
(2) Compute collision step;
(3) Compute advection step; impose boundary conditions through the flux;
(4) Compute time integration with the fourth-order RK time stepping;
(5) Compute updated density, velocity, and vorticity.
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Fig. 2. Streamlines and pressure contours of the cavity flow at Re = 400 with the
central flux for E = 256, N = 5 with the total grids N = (N + 1)2E.

Fig. 3. Streamlines and pressure contours of the cavity flow at Re = 400 with the
Lax-Friedrichs flux for E = 256, N = 5 with the total grids N = (N + 1)2E.

3 Computational Results

We demonstrate benchmark problems on lid-driven cavity flows and flows past
an impulsively started cylinder.

3.1 Lid-Driven Cavity Flow

Steady-state flows inside a square lid-driven cavity are simulated by using
our SEDG-LBM described in the previous section. The Reynolds number of
the lid-driven cavity flow is UH/ν, where U is the velocity of the lid, H
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Fig. 4. Streamlines of the cavity flow at (a) Re = 1000 and (b) Re = 5000 with the
Lax-Friedrichs flux for E = 256 and N = 5, with the total grids N = (N + 1)2E.

the length of the lid, and ν the kinematic viscosity. The initial velocity u is
(ux, uy) ≡ (0, 0), and the initial density ρ ≡ 1. At t > 0, we let the top lid move
at the velocity ub = (ux, uy) = (Ma ∗ cs, 0) with a Mach number Ma = 0.1.
The velocity of the top lid is imposed through the numerical flux as described
in Section 2.2.3.

Figs. 2 and 3 show the streamlines and pressure contours of the cavity flows
at Re = 400 with the central and Lax-Friedrichs fluxes, respectively, including
a nonuniform spectral element mesh with E = 256. We used the polynomial
order of N = 5 and a timestep δt such that CFL = minα |eα|δt

∆xmin

= 0.4, where
∆xmin is the minimum grid spacing. The streamlines for the two numerical
fluxes are almost indistinguishable, but the pressure contours for the central
flux exhibit oscillations in the lower section of the cavity.

The oscillations with the central flux become severe as Re increases, and the
simulation becomes unstable at Re = 1000 with the given mesh resolution.
This instability is due to the effect of positive eigenvalues associated with the
central flux when it is applied to wall boundary conditions (see Section 2.2.6).
Thus, for Re ≥ 1000, we demonstrate the results obtained from the Lax-
Friedrichs flux. Fig. 4 shows the streamlines of the cavity flows at Re = 1000
and Re = 5000 with the Lax-Friedrichs flux.

Fig. 5 demonstrates the nondimensional horizontal velocity ux/U along the
mid-vertical line of the cavity y/H forRe = 400, 1000, 3200, and 5000 from our
SEDG-LBM simulations, keeping the mesh resolution constant as in Figs. 2-3
with the total number of grids N = (N +1)2E = 36×256. A good agreement
at high Re is particularly notable with less resolution when compared to the
Ghia et al.’s simulations [36] using an implicit multigrid method. In particular,
for Re = 1000, the resolution of our SEDG-LBM is N = 9, 216, whereas the
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Fig. 5. Nondimensional horizontal velocity (u/U) along mid-vertical line for
Re = 400, 1000, 3200, and 5000. Lines represent our SEDG-LBM results, and square
dots represent the results by an implicit multigrid method by Ghia et al. [36].

total number of grids in [36] is 129 × 129 = 11, 641.

3.2 Flow Past an Impulsively Started Cylinder

In this section, time evolution of flows around an impulsively started circular
cylinder is considered, and boundary-layer development, separation, pressure
forces, and drag forces are studied in detail. The computational results will be
compared mainly with those from the vortex method and the spectral element
method associated with the incompressible Navier-Stokes equations [37,38].

High-resolution simulations are necessary at high Re to adequately resolve
the singular character of the flow at early times and to resolve the details
of the separation process [39–41]. At t > 0, it is assumed that a potential
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(a) (b)

Fig. 6. Spectral element mesh with around a circular cylinder with (a) E = 2, 208
and (b) E = 3, 758. (c) Close-up view around the cylinder for E = 3, 758. Cylinder
diameter D = 1.0, and computational domain Ω = [−19, 50] × [−25, 25].

flow exists, and a slip velocity (vortex sheet of zero thickness) is observed on
the surface of the body. Numerical schemes encounter difficulties in resolving
the initially developed thin boundary layers associated with impulsive starts
and in computing accurately quantities such as the drag coefficient. In our
formulation the initial velocity at t = 0 is zero, and for the effect of impulsive
start at t > 0 we impose the velocity of ub = (ux, uy) = (Ma∗cs, 0) around the
computational domain boundaries and ub = (ux, uy) = (0, 0) on the surface
of the cylinder. The boundary conditions are imposed weakly through the
numerical flux as described in Section 2.2.3.

The Reynolds number of the flow is

U∞D

ν
, (46)

where U∞ is the uniform inlet velocity and D is the diameter of the cylinder.
The nondimensional time T is based on the radius of the cylinder:

2U∞t

D
. (47)

Computations are carried out for Re = 550 and 9500 with CFL=0.4. Fig. 6
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Fig. 7. Time evolution of the drag coefficients for Re = 550 and Ma = 0.1 with
E = 2, 208, N = 5, and N = 62 × 2, 208 for the SEDG-LBM. Dash-dotted line
presents the results from the vortex method by Koumoutsakos and Leonard [37].

shows a spectral element mesh with E = 2, 208. The total drag force on the
cylinder, F̄t, is

F̄p + F̄f , (48)

where F̄p is the force due to pressure and F̄f the force due to friction. The
total drag coefficient of the cylinder, CD, is

F̄t · i
1
2
ρ∞U2

∞D
, (49)

where i is the unit vector in the x–direction. The pressure and friction drag
coefficients, CDp and CDf , are defined in the similar manner.

In Fig. 7, time evolution of the pressure, friction, and total drags is com-
pared to their time evolution with the vortex method by Koumoutsakos and
Leonard [37]. At earlier times for T < 0.5, the vortex method gives a much
more rapid decrease of the pressure and total drags, exhibiting a t1/2 singular-
ity [40]. The friction drag coefficient of our SEDG-LBM agrees well with that
obtained by the vortex method. The drag coefficients gradually recover from
the sudden drop due to the impulsive start, and the SEDG-LBM results start
to show good agreement with the vortex method for T ≥ 1, when the effects
of convection become important. As noted first in [40], the results from our
SEDG-LBM shows a slower decay mainly because of its finite-compressibility
effect.
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Fig. 8. Time evolution of the pressure and friction drag coefficients for Ma = 0.1,
0.2, and 0.3 with E = 2, 208, N = 5, and N = 62 × 2, 208 for the SEDG-LBM.

In Fig. 8, we show the drag coefficients for Ma=0.1, 0.2, and 0.3. Clearly,
as Ma increases, the initial decay in the pressure drag coefficient slows, and
the recovery from a sudden drop due to the impulsive start is delayed. We
note that the friction drag coefficient is not very sensitive to the variation of
Ma. This result implies that the compressibility in LBM affects mostly the
pressure field. The pressure wave originating from the impulsive start travels
at a constant lattice speed of sound cs. Since nondimensional time is measured
with flow velocity U∞, the distance traveled by the pressure wave is inversely
proportional to Ma at a given time.

Fig. 9 shows the sequence of contour plots of the nondimensional pressure
wave defined as (p − p∞)/

(

1
2
ρU2

∞

)

for Ma = 0.1 and Ma = 0.3 with con-
stant reference pressure p∞. Initially at T = 0, the pressure field is uniform.
The pressure wave with Ma = 0.1 propagates from the cylinder surface three
times faster than the one with Ma = 0.3 and disappears much more quickly
from the cylinder. The nearly incompressible pressure field, in which the front
stagnation point has the highest value and the top and bottom surfaces of
cylinder have lower values, is slowly established as the pressure wave propa-
gates outward radial direction. As the pressure at the front stagnation point is
increased, the pressure drag increases until T < 0.5 (Fig. 8), which takes less
time for smaller Ma. Once the pressure field is recovered, the pressure drag
starts to decrease and then gradually increases.

In Fig. 10, we present the results of drag coefficient in comparison with those
of the vortex method [37] and the spectral element method (SEM) [38]. Our
grid resolution is 135, 288 (E = 3, 758, N = 5) for Re = 9500, Ma = 0.05.
The results show good agreement with the results from the vortex method
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Fig. 9. Sequence of contour plots of the pressure wave (p−p∞)/
(

1
2ρU2

∞

)

for Re = 550
at T = 0.02, 0.04, 0.08, and 0.16 with E = 2, 208, N = 5, and N = 62 × 2208
for the SEDG-LBM. Upper and lower halves represent SEDG-LBM simulations at
Ma = 0.1 and Ma = 0.3, respectively.

and SEM. The delay in establishing the incompressible pressure field around
the cylinder contributes to the discrepancy in the pressure drag coefficients
at early time between the results from SEDG-LBM, the vortex method, and
SEM, as shown in Fig. 10.

Figs. 11 and 12 demonstrate the time sequence of streamlines with Ma = 0.1
for Re = 550 and Re = 9500 at different times T . The number of spectral
elements E = 2, 208 and the polynomial order of N = 5 are used.

4 Conclusions

We have presented a spectral-element discontinuous Galerkin lattice-Boltzmann
method for solving incompressible flows, such as the flows for a lid-driven cav-
ity and an impulsively started cylinder. We decoupled our numerical scheme
into collision and streaming steps, giving flexibility in dealing with numer-
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Fig. 10. Time evolution of the drag coefficients for Re = 9500 and
Ma = 0.05 computed on a mesh with E = 3, 758, N = 5, and
N = (N + 1)2E = 62 × 3, 758 = 135, 288 for the SEDG-LBM. Dash-dotted line
presents the results obtained from the vortex method [37] and dashed line from the
spectral element simulations [38].

ical stability at high Reynolds numbers. In the streaming step, we used a
spectral element discretization in a discontinous Galerkin form with a fully
diagonal mass matrix for solving the advection equation. We have shown the
implementation to impose boundary conditions weakly through the numerical
fluxes with the central and Lax-Friedrichs fluxes.

We have examined lid-driven cavity flows for Re=400–5000 and flows around
an impulsively started cylinder for Re=550–9500. Computational results show
good agreement with results from previously studied methods, namely, an
implicit multigrid method, a vortex method, and a spectral element method.
Our method shows some delay in establishing incompressibility at the initial
stage of the simulation.
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Fig. 11. Time evolution of streamlines at Re = 550 and Ma = 0.1; E = 2, 208,
N = 5 and N = (N + 1)2E.
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